Interdisciplinary conference

«RECENT ADVANCES in SCIENCE and TECHNOLOGY»

The 27th of May Tomsk Scientific Center

The mechanical properties of

Ti-Ni-Ta- based surface alloys on the

NiTi-substrate formed by the additive

thin-film electron beam synthesis

Filipp D'yachenko¹

2nd year graduate student

Meisner L.L.^{1, 2}, Atovullaeva A.A.²

¹Institute of Strength Physics and Materials Science SB RAS ²National Research Tomsk State University Tomsk, Russia E-mail: <u>frozennonetroll@mail.ru</u>

The research was carried out with support by the grant of the Russian Science Foundation No. 18-19-00198 (26.04.2018)

The structure

1. Introduction

- 1. What are metallic glasses?
- 2. Application and problematic fields
- 3. Surface alloys

2. Materials and methods

- 1. NiTi shape memory alloy
- 2. Additive thin-film electron beam synthesis
- 3. Instrumented indentation

3. Results and discussion

- 4. Conclusion
- 5. References
- 6. Acknowledgments

METALLIC GLASSES

3

Comparative characteristics

of crystalline and amorphous state

CRYSTALLINE STRUCTURE	AMORPHOUS STATE		
Long atomic order	Near atomic order		
Translational symmetry	Disordered structure		
Structural anisotropy	Isotropic material		
High elastic and plastic properties	Low plastic properties		
Strain hardening	No strain hardening 🔶		

METALLIC GLASSES

BULK METALLIC GLASSES (BMGs) ($h \ge 10$ mm)

AMORPHOUS COATING on the metallic substrate $(10 \ \mu m \le h \le 100 \ \mu m)$

THIN-FILM METALLIC GLASSES (TFMGs) ($h \le 100 \ \mu m$)

Springs / Wires

Boeing's variable geometry of nozzle

Shape memory elements

METALLIC GLASSES

CRACK PROPAGATION

due to the

low ductility of amorphous state

SURFACE ALLOYS

SURFACE ALLOYS

8

Additive thin-film electron beam synthesis

MAGNETRON ELECTRON SPUTTERING BEAM

SURFACE ALLOYS

SURFACE ALLOY

SUBSTRATE

The purpose

to investigate the mechanical properties of

Ti-Ni-Ta-based surface alloys on the NiTi-substrate

formed by the additive thin-film

electron beam synthesis

The scientific and applied tasks

- to study basic principles and methods of investigations of mechanical properties of the materials on submicro- and microscale levels
- to investigate the mechanical properties of the surface layers of the NiTi samples before and after additive thin-film electron beam synthesis by method of the instrumented indentation
- to determine the values of hardness *H*, elastic modulus *E*, characteristic of plasticity δ and recovery ratio η of the indent on the synthesized layers \bigstar

Materials and methods

Commercial **NiTi alloy** produced as rolled sheets by vacuum induction melting (MATEK-SMA, Russia)

Chemical composition:

Ti – 55.08Ni – 0.051C – 0.03O – 0.002N (wt. %) Specimen's size – 10 x 10 x 1 mm

Preliminary surface treatment

1 Chemical etching	2 Electrolytically polishing	3 Ultrasonic bath	4 LEHCEB* treatment
In acid bath (3 p. HNO ₃ + 1 p. HF)	In acid bath (3 p. CH ₃ COOH + 1 p. HClO ₄) and ice-water mixture	Three times in distilled water	Energy density $E_s = 3,4 \text{ J/Cm}^2$
			Pulses n = 32 🚖

*LEHCEB** – *low-energy high-current electron beam*

#	Magnetron s	puttering	Pulsed electron beam melting of "film-substrate" system			Thickness <i>h,</i> μm	
1	Ti ₇₀ Ta ₃₀	50 nm		$E_s = 2 \text{ J/cm}^2$	n = 5	~1	
2	Ti ₆₀ Ta ₄₀	50 nm		$E_s = 2 \text{ J/cm}^2$	<i>n</i> = 5	~1,5	
	Number of cycles <i>N</i> = 30						

The surface modifying of NiTi specimens was performed on automatic RITM-SP facility ("Microsplav", . Russia, Tomsk)

Measurement of thin film mechanical properties using nanoindentation / G. M. Pharr, W. C. Oliver // MRS Bulletin. – 1992. – Vol. 17. –P.28–33. Plasticity characteristic obtained through hardness measurement / Yu. V. Milman, B. A. Galanov, S. I. Chugunova // Acta Met.Mater. – 1993. –Vol. 41. – P. 2523–2531. Shape recovery after nanoindentation of NiTi thin films / W. C. Crone, G. A. Shaw, D. S. Stone, A. D. Johnson, A. B. Ellis // Carlotte. NC. – 2003. – P. 1–6.

Results and discussion

Initial NiTi

OPTICAL METALLOGRAPHY

Initial NiTi

After preliminary surface treatment with out 🖈 electron beam irradiation

Results and discussion

FIGURE 2. Surface microstructure of e-beam treated NiTi (a): 1, 2, 3-images with indication of sublayers I-IV, and dependences of $H_{\mu}(1)$, $\delta_{H}(2)$, and $\eta(3)$ on indentation depth h (b)

[*] Surface structure and physicomechanical properties of NiTi exposed to electron beam and ion-plasma treatment / S.N. Meisner [et al.] // AIP CP. – 2017. – Vol. 1909. – P. 020134(1-4).

Meisner S. N., Yakovlev E. V., Semin V. O., Meisner L. L., Rotshtein V. P., Neiman A. A., D'yachenko F.A. Mechanical behavior of Ti-Ta based surface alloy fabricated on TiNi SMA by pulsed electron-beam melting of film/substrate system // Applied Surface Science. – 2018. – Vol. 437. – P. 217 – 226.

Neiman A., Mukhamedova R., Semin V. Mechanical properties of the TiNi and surface alloy formed by pulsed electron beam treatment // Materials Research Proceedings. – 2018. – Vol. 9. – P. 58–62.

The additive thin-film electron beam synthesis of Ti-Ni-Ta surface alloys leads to the formation of the nanocomposite structure with high strength and elastic characteristics of the surface alloys, with a good combination of plasticity properties of the intermediate zone.

References

- Measurement of thin film mechanical properties using nanoindentation / G. M. Pharr, W. C. Oliver // MRS
 Bulletin. 1992. Vol. 17. –P.28–33.
- Plasticity characteristic obtained through hardness measurement / Yu. V. Milman, B. A. Galanov, S. I.
 Chuqunova // Acta Met.Mater. 1993. –Vol. 41. P. 2523–2531.
- Shape recovery after nanoindentation of NiTi thin films / W. C. Crone, G. A. Shaw, D. S. Stone, A. D. Johnson, A.
 B. Ellis // Carlotte. NC. 2003. P. 1–6.
- Surface structure and physicomechanical properties of NiTi exposed to electron beam and ion-plasma treatment / S.N. Meisner [et al.] // AIP CP. 2017. Vol. 1909. P. 020134(1-4).
- Meisner S. N., Yakovlev E. V., Semin V. O., Meisner L. L., Rotshtein V. P., Neiman A. A., D'yachenko F.A.
 Mechanical behavior of Ti-Ta based surface alloy fabricated on TiNi SMA by pulsed electron-beam melting of film/substrate system // Applied Surface Science. 2018. Vol. 437. P. 217 226.
- Neiman A., Mukhamedova R., Semin V. Mechanical properties of the TiNi and surface alloy formed by pulsed electron beam treatment // Materials Research Proceedings. – 2018. – Vol. 9. – P. 58–62.

The authors would like to thank

Yakovlev E.V.

Junior researcher of the IHCE SB RAS – for work related to the additive thin-film electron beam synthesis,

Shulepov I.A.

Ph.D , Lead Engineer of the ISPMS SB RAS – for testing mechanical properties of Ti-Ni-Ta-based surface alloys,

Semin V.O.

Ph.D , Junior researcher of the ISPMS SB RAS – for conducting electron microscopy investigations,

This work was supported by the grant of the Russian Science Foundation No. 18-19-00198 (26.04.2018)

Interdisciplinary conference

«RECENT ADVANCES in SCIENCE and TECHNOLOGY»

The 27th of May Tomsk Scientific Center

THANK YOU FOR YOUR ATTENTION

Filipp D'yachenko¹

2nd year graduate student

Meisner L.L.^{1, 2}, Atovullaeva A.A.²

¹Institute of Strength Physics and Materials Science SB RAS ²National Research Tomsk State University Tomsk, Russia E-mail: <u>frozennonetroll@mail.ru</u>

The research was carried out with support by the grant of the Russian Science Foundation No. 18-19-00198 (26.04.2018)