ISPMS SB RAS

THE INFLUENCE OF THE WIRE FEED GEOMETRY ON THE PROCESS OF THE ELECTRON-BEAM FREEFORM FABRICATION OF TI-6AL-4V COMPONENTS

Kalashnikov Kirill

TABLE OF CONTENTS

EBF³ process and its topicality Materials and methods used in the work

- 3. Results of the work:
- Macrostructural characterization
 X-Ray analysis
- Microhardness comparison
- 4. Conclusions

Topicality: EBF³ Application

Aircraft

Foreign corporations:

- Airbus
- Boeing
- Lockheed Martin
- NASA

Aerospace

4

Automotive

Russian corporations:

«SESPEL» Cheboksary Enterprise
S.P. Korolev RSC «Energia»

TOPICALITY: FACTORS THAT INFLUENCE PRODUCT FORMATION PROCESS AT 3D PRINTING

*Wu Q, Lu J, Liu C, Shi X, Ma Q, Tang S, Fan H, Ma S (2017) Obtaining uniform deposition with variable wire feeding direction during wire-feed additive manufacturing. Mater Manuf Process 32:1881– 1886. https://doi.org/10.1080/10426914.2017.1364860

Wire feeding stability

The aim of this work is to study the printing geometry influence on the process of electronbeam additive manufacturing of titanium alloy Ti-6Al-4V

MATERIALS AND METHODS

- diameter of 1 mm;
- for printing;
- machine;

- •

The samples were printed from titanium alloy Ti-6Al-4V wire with

• A cooled three-axis table and a four-axis table without cooling were used

Specimens for metallographic studies, microhardness measurements, and X-ray structure analysis were cut with the use of an electrical discharge

Metallographic studies were carried out on the Altami MET 1S optical microscope and the OLYMPUS LEXT OS4100 confocal microscope; Microhardness was measured on Duramin 5 microhardness meter; X-ray analysis was carried out on Drone 7.

TESTED SAMPLES ROTATION BODIES

The schemes of obtaining the samples and photos of vacuum chamber with a standard 3-axis water-cooled table (a, c) and rotating uncooled table (b, d). 1
Electron beam gun, 2 – Wire feeder, 3 – Substrate, 4 – Spiral trajectory of the sample formation, 5 – Three-axis water-cooled table, 6 – Uncooled rotating table, 7 – Direction of rotation.

The scheme of cutting the templates and measuring microhardness.

- 1 Sample,
- 2 Substrate,
- 3 Template,

4 – Line of microhardness measurements

7

The geometry affected zones on samples manufactured with the use of the standard 3-axis table: a - the scheme, b - the sample.

RESULTS AND DISCUSSION SAMPLE MANUFACTURED BY METHOD 1

Macrostructure of the sample in areas affected by the wire feed geometry

RESULTS AND DISCUSSION SAMPLE MANUFACTURED BY METHOD 2

No geometry affected zones

Macrostructure of the sample at different wall sections

RESULTS AND DISCUSSION X-RAY ANALYSIS

Method 1				Method 2			
Top (α)		Bottom (α')		Top (α')		Bottom ($\alpha + \alpha' + \beta$)	
α	ß	α′	β	α′	ß	α	β
a = 2,92744 c = 4,67744 V = 34.715 c/a = 1.59779		a = 2,92614 c = 4,62904 V = 34.325 c/a = 1.581961		a = 2,92625 c = 4,6660 V = 34.606 c/a = 1.59473		a = 2,96184 c = 4,50815 V = 34.249 c/a = 1.52207	a = 3,29311 V = 35.712

RESULTS AND DISCUSSION MICROHARDNESS MEASUREMENTS

Microhardness of the sample, manufactured on the 3-axis table (mode *I*) in geometry affected zones

Microhardness of the sample, manufactured on the 4-axis table (mode *II*) in different sections

CONCLUSIONS

- microhardness of the product.
- mechanical characteristics that are achieved at high cooling rates.
- the process and get rid of such defects.

• It was found that during printing on the standard 3-axis table the four characteristic quadrant zones, called geometry affected zones, were identified on the sample. The presence of such a zone makes it impossible to use the part obtained in this way. At the same time, due to high cooling rates, the resulting structural-phase state of such samples provides high values of

• The use of a rotary table allows to get rid of geometry affected zones in the printing plane. It allows achieving the highest accuracy of product formation and surface quality. At the same time, defects such as pores were detected, and the resulting structure does not provide the

· Optimization of the part manufacturing parameters will allow improving the thermal modes of

THANK YOU FOR YOUR ATTENTION!