Institute of Strength Physics and Materials Science, Siberian Branch of Russian Academy of Sciences

Laboratory of physics of structural transformations

=

The characterization of surface layers produced by ion-plasma treatment in CrNiMo austenitic stainless steel with different microstructures

Moskvina Valentina

PhD student, ISPMS SB RAS

Scientific supervisor: Astafurova E.G. Dr. Sc. Phys.-Math., ISPMS SB RAS

OUTLINE

F

I

Motivation Material and experimental procedure

Different microstructures in 316L-type steel formed by thermal-mechanical treatments

- TEM analysis
- EBSD analysis

Features of IPT-assisted surface layers in 316Ltype steel with different microstructures:

- SEM analysis
- X-ray diffraction analysis
- AES and nanohardness results

Summary

Austenitic stainless steels

Advantages:

- ⊘ high ductility
- high corrosion resistance
- very good cold forming properties
- ⊘ cryogenic properties
- accessibility to

processing

Disadvantages:

- ⊗ low yield strength
- poor wear resistance
- low surface hardness

=

Ion plasma treatment (IPT)

Ę

Ways to improve properties of austenitic stainless steels:

o alloying

o strain hardening

precipitate strengthening

 o diffusion gaseous and ionplasma surface saturation

Ion-plasma diffusion saturation of the steel surface with interstitial atoms (**N**, **C**, **N** + **C**) results in surface hardness and tribological properties improvement

THE AIM OF WORK

To evaluate the effect of deformation defects on elemental and phase composition, nanohardness and microstructure of stable austenitic stainless steel (316L-type) subjected to ionplasma surface treatment.

What about the role of deformation-induced defects and grain boundaries in the hardened layer formation of ion-plasma treated steels?

Austenitic stainless steel - Analogue AISI 316L (Fe-17Cr-13Ni-2.7Mo-1.7Mn-0.6Si-0.01C mass %)

Thermomechanical treatments

Different microstructures in 316L-type steel formed by thermomechanical treatments

TEM bright-field images with SAED patterns of the different microstructures in 316L-type steel

Two types of grain-subgrained structures in steel

EBSD OIM (a, b) and KAM (c, d) images for the R1(a, c) and R2 (b, d) specimens

EBSD patterns are given with a different "confidence index" - CI, with CI > 0.4 (a, b) and with CI > 0.1 (c, d)

Black regions correspond to points with low CI

Features of IPT-assisted surface layers in 316Ltype steel with different microstructures

SEM cross-sectional images of fractured surfaces of R1 specimen after ion-plasma treatment

IPT facilitates a formation of composition hardened surface layer \approx 20-22 µm in thickness

Auger electron spectroscopy results (carbon and nitrogen concentration) combined with nanohardness depth profiles for R1 and R2 specimens (cross-sectional direction)

=

X-ray diffraction analysis of R1 and R2 specimens after ion-plasma treatment

Ţ

Phase composition in surface layers after ionplasma treatment: $Fe-\gamma_{N,C} + Fe_4(N,C) +$ $Cr(N,C) + Fe-\alpha_{N,C}$

Ţ

SUMMARY 🗉

- The surface layers of both specimens underwent IPT-processing possess similar phase composition: expanded austenite (Fe- $\gamma_{N,C}$), ferrite (Fe- $\alpha_{N,C}$), Fe₄(N,C) and Cr(N,C) phases
- Pre-deformation stimulates an accumulation of interstitial atoms (N and C) under ion-plasma treatment
- Deformation-assisted defects suppress bulk diffusion of carbon under IPT
- High density of dislocations, boundaries and subboundaries provide high surface nanohardness in 316L austenitic stainless steel under ion-plasma treatment

These results provide experimental support for key role of deformationassisted well-developed microstructure in accumulation and bulk diffusion of interstitials under ion-plasma treatment of steel Characterization of the surface layers produced by ion-plasma treatment in CrNiMo austenitic stainless steel with different microstructures

<u>Valentina Moskvina</u>

ph.d. student, junior reasercher

Scientific supervisor: leading researcher, Doctor of Phys. and Math. <u>**E.G. Astafurova**</u>

Institute of Strength Physics and Materials Science, Siberian Branch of Russian Academy of Sciences valvamoskvina1993@gmail.com

Thank You For Your Attention