

=

Institute of Strength Physics and Materials Science of Siberian Branch Russian Academy of Sciences

Deformation of Hadfield steel single crystals by dry sliding friction with the normal load^[110]/friction force orientations [110] and [001]

Novitskaya O.S., Laboratory of Physics of Surface Hardening

Problem 🗦

>To stady the shear pattern near the side face of Hadfield steel single crystals with the same normal load axis but different friction force axes.

>To correlate it with the calculated slip and twin stresses induced by the normal pressure and friction forces.

>To analyze changes in the dislocation structure with distance from the worn surface.

Test procedure

<u>Materials:</u> samples – Hadfield steel single crystals, counterbody – 105WCr6 steel hardness of 60 HRC.

Chemical composition: C - 1.1%, Mn - 12.5%, Si - 0.4%, Ni - 0.15%, Cr - 0.29%, V - 0.035%, Co - 0.04%, Ti - 0.007%, and the rest is Fe.

The friction test configurations

Test conditions:

- 1) normal load of 21 N
- 2) sliding velocity of 0.1 m/s
- 3) dry sliding friction
- 4) consistent tests under constant conditions

Research technique

- Sliding friction "TRIBOtechnik" tribometer.
- Single crystal surfaces were inspected using an Olympus LEXT OLS4100 confocal microscope.
- The deformation structure of surface and near-surface layers were investigated in cross section aftertribologicaltests by transmissionelectronmicroscope (TEM) JEOL JEM-2100F.

Wear and coefficient of friction

Time variation of the friction coefficient (a) and wear rate (b) for Hadfield steel single crystals with different crystallographic orientations

Stress-strain analysis Maximum nominal stresses for the normal load/friction force orientations [110]/[110]

Slip plane	Close- packeddirection	Total slip stress(τ _{sl,} MPa)	Partial dislocation Burgers vector	Total twinning stress(τ _{tw.} MPa)	Twinning-to- slipstressratio(τ_{tw} / τ_{sl})
(111)	$[\overline{1}01]$ $[0\overline{1}1]$	0.66 0.66	[112]	0.76	1.15
(111)	$\begin{bmatrix} 0\overline{1}\overline{1} \end{bmatrix}$ $\begin{bmatrix} \overline{1}0\overline{1} \end{bmatrix}$	0.66 0.66	[112]	0.76	1.15

Maximum nominal stresses for the normal load/friction force orientations $\left[\overline{110}\right] / \left[001\right]$

Slip plane	Close- packeddirection	Total slip stress (τ _{sl.} MPa)	Partial dislocation Burgers vector	Total twinning stress (τ _{tw} .MPa)	Twinning-to- slipstressratio(τ _{tw} / τ _{sl})
(111)	[011] [101]	1.03	[112]	1.19	1.05

Shear directions and slip planes in Hadfield steel single crystals with the normal load/friction force orientations [110]/[110] and [110]/[001]

Slip band patterns

TEM Dislocation structure changes from the surface into the bulk of the material

Conclusion **B**

- The coefficient of friction does not change monotonically in both types of single crystals.
- According to the analysis of the dislocation structure there are the following zones with different deformation mechanisms:
- * dislocation slip zone,
- * inactive twinning zone,
- * active twinning zone (one or two microtwin systems),
- * zone of deformation microbanding,
- * zone of microbands with nanotwins,
- * nanofragmentation zone,
- * zone of interaction between the sample material and the disk (mixing zone).

Thank you for your attention