V.E. Zuev Institute of Atmospheric Optics SB RAS Laboratory of Coherent and Adaptive Optics

Adaptive optic systems for horizontal atmospheric

paths

Selin A.A.

Academic supervisor: V.V Lavrinov

Content

Purpose: To describe basic principles and components of the adaptive Optics (AO) and properties of the horizontal atmospheric path

Structure: 1. The main problem in adaptive optics

- 2. The main concept and components of adaptive optical systems
- 3. Some of the results of AO systems
- 4. Examples and results of operating adaptive optical system on horizontal atmospheric paths
- 5. Conclusion and future works

Main problem in adaptive optics

Temperature fluctuations in small patches of air cause changes in the index of refraction (like many small lenses)

Light rays affected by turbulence

Turbulence makes stars twinkle and spreads out light

How does an adaptive optics work?

Scheme of an adaptive optics system

Feedback loop: next cycle corrects the small errors of the last cycle

> Distorted wavefront

Deformable mirror shape

Corrected wavefront

Main components of adaptive optics

How to measure turbulent distortions

How to correct turbulent distortions

Shack-Hartmann wavefront sensor measures the local "tilt" of the wavefront and calculates an approximate wavefront

A Deformable mirror corrects optical aberrations in an adaptive optics systems using data from a wavefront sensor

Adaptive optics systems in real telescopes

Lick Observatory's 3 m telescope

Adaptive optics package below the main mirror

Adaptive optics on the 5 m Hale telescope at the Palomar Observatory

10 m Keck Telescope

Adaptive optics is here

Adaptive optics results

Neptune in infra-red light

Without adaptive optics

With Keck adaptive optics

Canada France Hawaii Telescope

Galactic Center / 2.2 microns 13"x13" Field. 15 minutes exposure.

Without Adaptive Optics compensation 0.57" Seeing

Uranus with the Hubble Space Telescope and Keck AO

Copyright CFHT. 1998.

With Adaptive Optics compensation 0.13" Full Width at Half Maximum

AO for horizontal atmospheric path's

Imaging system for horizontal atmospheric path

With AO

correction

Without AO correction

Optic scheme

ideal

Future work

- Technical calculation of a two-stage adaptive optical system
- Design a tilt sensor to control tip / tilt mirrors
- A research of the efficiency of using AOS for a small telescope on horizontal paths in image systems

Thank you for attention