PRODUCTION OF THE MICRON POWDERS BY THE ELECTRIC EXPLOSION OF METALLIC FIBERS ¹

A.S. SKRYABIN*, A.V. PAVLOV*, A.M. KARTOVA*, V.D. TELEKH*, M.M. SEROV**, A.E. SYTCHEV***

*Bauman Moscow State Technical University, Baumanskaya 2-ya, 5, Moscow, 105005, Russia, terra107@yandex.ru, 8(499)2636085

**Moscow Aviation Institute, Volokolamskoe shosse, 4, Moscow, 125993, Russia

***ISMAN, Academician Osipyan str., 8, Chernogolovka, 142432, Russia

Nowadays the electric explosion [1] is under consideration as a prospective method for the production of micron metal powders. The explosion is executed by the "slow" energy input from a charged capacity C_0 into a metal fiber (with a resistance of R_0) produced by the method [2]. That condition can be expressed [3] as

$$\tau_d >> \tau_{MHD}, \tag{1}$$

where $\tau_d \sim R_0 C_0$ is the time constant of the circuit and $\tau_{MHD} \approx 0.2...1.4$ µs is the characteristic time of the magnetohydrodynamic MHD instabilities.

Experimental studies were performed in a chamber in an inert argon atmosphere (with pressure of ≈ 1 atm). The circuit included a C_0 =0.6 μ F capacitor, a charger and a high performance thyratron (Pulsethech Ltd) with an igniter. A titanium fiber (with an average diameter of 20...50 μ m) was as the resistance R_0 and the raw material. The charger allowed to the capacitor charging up to a voltage U_0 from 2.5 to 5.0 kV. The current and voltage dynamics were measured by a Rogovsky belt and a voltage divider. The explosion products collected inside a quartz tube were characterized by SEM, EDX and optical microscopy.

The measuring of the current and voltage dynamics indicated that the characteristic current amplitudes I_{max} were about \approx 40...70 A. The typical τ_d were about \approx 40...100 μ s. So the condition (1) was fulfilled at the studies. The produced titanium particles (see Fig. 1) had a spherical shape with an average diameter from 80 to 170 μ m. A purity of the particles was varied from 97.32 to 99.63 % as for the raw fibers. Oxygen was not detected.

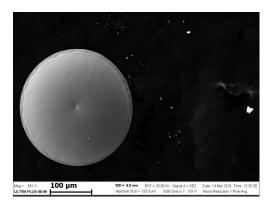


Fig. 1. The typical produced Ti particle

The "slow" (with $\tau_d \approx 40...100~\mu s$) electric explosion in an inert atmosphere is perspective for the production of metallic particles from the fibers. The energy consumption is about 0.5...1.0~kW-hour per 1 kg of Ti particles. The using of the micron titanium particles are under consideration for different applications, such as a catalyst, a raw for additive manufacturing etc.

REFERENCES

- [1] *Surkaev A.M.* // Technical Physics Letters. 2014. 40. № 2. 23-29.
- [2] Mitin B.S., Serov M.M., Yakovlev V.B., Edneral N.V. //The physics of metals and metallography. 1999. 87. № 3. 221-225.
- [3] Surkaev A.M // Technical Physics. 2015. 85. № 7. 37-44.

573

¹ This work was performed using research facilities cluster "Beam-M" (BMSTU).