SILICON AND CARBON ISOTOPE SHIFTS IN SIV⁰ COLOR CENTER*

K.N. BOLDYREV1, V.S. SEDOV2

¹Institute of spectroscopy, Russian Academy of Sciences, Troitsk, Moscow, Russia ²Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, Russia

Studies of color centers, such as silicon vacancy (SiV) center in diamond are currently of high interest in view of applications in photonics, particularly, in quantum information technologies [1]. Changing the isotopes of impurities in crystals is a fruitful method of studying optically active defects. Particularly, analysis of phonon band positions in PL or absorption spectra, when isotope of diamond host lattice is changed, allows a discrimination of local vibration modes (LVM) and phonon modes. Collins et al.[2] observed isotope shifts for 12 different ZPL lines in 99% ¹³C HPHT diamond and identified LVM for some of the defects.

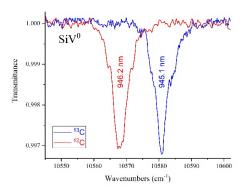


Fig.1. Absorption spectra of SiV⁰ center in diamonds enriched ¹²C-¹³C isotopes

By playing with C and Si isotopes, it's possible to observe a frequency shift in SiV center, which indicates the relation between the lattice structure of SiV ceter and its PL. Such possibility is important for various applications, especially in the field of quantum technologies. Moreover, the use of isotopically pure materials makes it possible to obtain the narrowest lines of SiV color centers [3]. Previously, line shift was investigated for SiV- color centers in diamonds enriched both in ²⁸Si, ²⁹Si, and ³⁰Si isotopes [3] and in ¹²C and ¹³C isotopes [4].

Neutrally charged SiV⁰ (946 nm) exhibits excellent spin properties, with spin-lattice relaxation times (T₁) approaching one minute and coherence times (T₂) approaching one second [5], as well as excellent optical properties, with approximately 90% of its emission into the zero-phonon line and near-transform limited optical linewidths [5]. In spite of significant activity on the study of color centers in isotopically modified diamond [6], no data on SiV⁰ in ¹³C diamond, as well enriched by different Si isotopes was reported so far. Here, we report on isotopic shift effects in SiV0 centers for both carbon and silicon atoms. The present work describes the MPCVD-growth of single-crystal diamond layers with engineered isotope compositions: (1) ¹²C/¹³C with natural Si content, (b) ²⁸Si/²⁹Si/³⁰Si with natural carbon content. The influence of isotope composition in these series of samples on SiV⁰ peak will be reported. Specifically, a large isotopic shift for ¹²C and ¹³C diamonds was observed (Fig. 1), while for the change of silicon isotopes almost no significant shift was registered. Potentially, the obtained results will have an impact for the prospects of using SiV⁰ centers in diamond as single-photon sources in quantum optical information technologies.

REFERENCES

- [1] R. Evans, et al., "Photon-mediated interactions between quantum emitters in a diamond nanocavity", Science, vol. 362, p. 662, 2018.
- [2] G. Davies, "Current problems in diamond: towards a quantitative understanding", Physica B: Cond. Matt., vol. 273, p. 15, 1999.
- [3] V. Ralchenko, et al., "Monoisotopic Ensembles of Silicon-Vacancy Color Centers with Narrow-Line Luminescence in Homoepitaxial Diamond Layers Grown in H₂-CH₄-[x]SiH4 Gas Mixtures (x = 28, 29, 30)", ACS Photonics, vol. 6, no. 1, pp. 66–72, 2019.
- [4] V. Sedov, et al., "SiV Color Centers in Si-Doped Isotopically Enriched ¹²C and ¹³C CVD Diamonds", Phys. Status Solidi A, vol. 214, no. 11, p. 1700198, 2017.
- [5] B. C. Rose, et al., "Observation of an environmentally insensitive solid-state spin defect in diamond", Science, vol. 361, pp. 60–63, 2018.
- [6] A. Collins, et al., "Spectroscopic studies of carbon-13 synthetic diamond", J. Phys. C: Solid State Phys., vol. 21, p. 1363, 1988.

^{*} The work was supported by the Russian Science Foundation (grant no. 21-72-10153).