EFRE-2024: 6th International Conference on New Materials and High Technologies Advanced inorganic materials and coatings

N1-O-047402

ELECTRONIC STRUCTURE AND TRANSPORT PROPERTIES OF TOPOLOGICAL INSULATORS Bi₂Te₃ AND Bi₂Se₃

 $\underline{S.T.\ BAIDAK}^{1,2},\ B.M.\ FOMINYKH^{1,2},\ A.V.\ LUKOYANOV^{1,2},\ A.N.\ PEREVALOVA^{1},\ S.V.\ NAUMOV^{1},\ E.B.\ MARCHENKOVA^{1},\ V.V.\ MARCHENKOV^{1,2}$

¹M.N. Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia
²Institute of Physics and Technology, Ural Federal University Named after the First President of Russia B.N. Yeltsin, Ekaterinburg, Russia

Bismuth chalcogenides Bi₂Te₃ and Bi₂Se₃ are typical representatives from the family of topological insulators. With the help of external influence (magnetic field, temperature, pressure, etc.), their electronic structure can be changed and, consequently, their physical properties can be modified. This, in turn, can be used in various devices. Due to their special surface states, Bi₂Te₃ and Bi₂Se₃ have great potential applications in spintronic and thermoelectric devices, biological and chemical sensors, as well as in photonic and optoelectronic applications. Therefore, obtaining new knowledge about the features of electronic structure and electronic transport in such topological materials is of great interest, and such studies are relevant both from a fundamental and applied point of view.

Theoretical calculations of the electronic structure of Bi₂Te₃ and Bi₂Se₃ compounds were carried out within the framework of the density functional theory, taking into account spin-orbit coupling [1]. A band gap was obtained in the band structure of the compounds, in Bi₂Te₃ its width was 0.48 eV, and in Bi₂Se₃ – 0.41 eV, which are consistent with previous calculations. To account for the various temperature values at which experimental studies were conducted, the crystal structure parameters at the corresponding temperature values [2] and temperature smearing were used, which led to a small electron density at the Fermi energy E_F . The density of electronic states at the Fermi level $N(E_F)$ is one of the most important characteristics and is closely related to many electronic properties, in particular, to the concentration of current carriers n. Also in this work, the temperature dependences of electrical resistance and Hall resistance of single crystals of topological insulators Bi₂Te₃ and Bi₂Se₃ were measured in the temperature range from 4.2 to 300 K and in magnetic fields up to 10 T [1]. It was found that the concentration of current carriers n depends on temperature in different ways [3,4]: in the case of Bi₂Te₃, n increases with temperature, however, it is almost temperature independent for Bi_2Se_3 . One of the possible reasons for the different behavior of the n(T) dependencies may be the different behavior of the density of states at the Fermi level with a change in temperature. As a result of the analysis of our theoretical and experimental data of the conducted studies, a correlation was found between the density of electronic states at the Fermi level and the concentration of current carriers. In the case of Bi₂Te₃, the density of states at the Fermi level and the concentration of current carriers increases with increasing temperature. On the contrary, the opposite trend is observed for Bi₂Se₃ – both characteristics decrease with increasing

The research was supported by Russian Science Foundation within project No. 22-42-02021.

REFERENCES

- [1] V.V. Marchenkov, A.V. Lukoyanov, S.T. Baidak, A.N. Perevalova, B.M. Fominykh, S.V. Naumov, and E.B. Marchenkova, "Electronic structure and transport properties of Bi₂Te₃ and Bi₂Se₃ single crystals," Micromachines, vol. 14, no. 10, pp. 1888, Sep. 2023, doi: 10.3390/mi14101888.
- [2] K. Park, Y. Nomura, R. Arita, A. Llobet, and D. Louca, "Local strain and anharmonicity in the bonding of Bi₂Se_{3-x}Te_x topological insulators," Physical Review B, vol. 88, pp. 224108, Dec. 2013, doi: 10.1103/PhysRevB.88.224108.
- [3] Z. Zhang, P.A. Sharma, E.J. Laverni, and N. Yang, "Thermoelectric and transport properties of nanostructured Bi₂Te₃ by spark plasma sintering," Journal of Materials Research, vol. 26, pp. 475-484, Feb. 2011, doi: 10.1557/jmr.2010.67.
- [4] P. Cermak, P. Knotek, P. Ruleová, V. Holy, K. Pálka, V. Kucek, L. Benes, J. Navratil, and C. Drasar, "High power factor and mobility of single crystals of Bi₂Se₃ induced by Mo doping," Journal of Solid State Chemistry, vol. 277, pp. 819–827, Sep. 2019, doi: 10.1016/j.jssc.2019.07.045.