EFRE-2024: 6th International Conference on New Materials and High Technologies Synchrotron Radiation Detectors

- N5-O-048002 -

INVESTIGATION OF STEADY STATE X-RAY SENSITIVITY OF SINGLE-CRYSTAL SAPPHIRE SENSORS*

 $\underline{K.\ A.\ CHASHTANOV^{l}}$, A. V. $TYAZHEV^{l}$, I. D. $CHSHERBAKOV^{l}$, O. P. $TOLBANOV^{l}$, A. N. $ZARUBIN^{l}$, A. V. $SHEMERYANKINA^{l}$, M.S. $SKAKUNOV^{l}$, A.E. $VINNIK^{l}$, L.K. $SHAIMERDENOVA^{l}$

¹National Research Tomsk State University, Tomsk, Russia

The paper presents the results of an experimental investigation and simulation of steady state photocurrent of single-crystal sapphire pad sensors when irradiated with X-ray quanta with energies in the range of 10-60 keV.

It has been experimentally shown that single-crystal sapphire sensors are characterized by:

- linear dependence of the photocurrent value on X-ray photon flux intensity;
- sublinear dependence of the photocurrent on the voltage on the sensor;
- absence of polarization effects when irradiated with low-intensity X-ray fluxes.

By comparing the simulated and experimental data on the photocurrent value, the lifetime of nonequilibrium electrons was estimated.

REFERENCES

[1] Trammell R., Walter F.J. // Nucl. Instr. and Meth. 1969. V. A 76. P. 317 – 321

^{*}The investigation was supported with:

⁻ Russian Federation grant FSWM-2022-0018 in part of photocurrent simulation;

⁻ Russian Federation grant 075-15-2022-1132 in part of experimental investigation of photocurrent dependence on bias voltage and X-ray intensity